Resource Allocation Challenges and Solutions in Cloud Computing for Machine Learning Workloads: A Comprehensive Review

Authors

  • Khalid Ahmed Masoud Qadoua Computer Science Department, Faculty of Science, Gharyan University, Libya Author
  • Elbashir Mohamed Abdullah Khalil Computer Science Department, Faculty of Science, Gharyan University, Libya Author

DOI:

https://doi.org/10.65417/ljere.v1i2.53

Keywords:

Resource Allocation, Cloud Computing, Machine Learning Fog Computing, Efficient Distribution, Technological Advancement, Scalability, Flexibility

Abstract

In the rapidly evolving landscape of digital computation, the integration of cloud and fog computing stands at the forefront, offering unprecedented scalability and flexibility. This review paper delves into the critical realm of resource allocation within cloud computing, exploring various techniques and their implications, especially in the context of burgeoning machine learning applications. While cloud environments are revolutionizing how data-driven tasks are approached and executed, they concurrently pose intricate challenges, especially concerning efficient resource distribution. By examining related works and methodologies, this review provides a comprehensive understanding of current solutions and the inherent challenges they aim to address. As machine learning tasks become increasingly prevalent within the cloud, the nuances of resource allocation become even more pronounced, demanding innovative solutions. This paper encapsulates these nuances, charting a path for future research and highlighting the immense potential waiting to be unlocked in the confluence of cloud computing and machine learning.

References

1. Hu, P., Dhelim, S., Ning, H., & Qiu, T. (2017). Survey on fog computing: architecture, key technologies, applications and open issues. *J. Netw. Comput. Appl.*, vol. 98, pp. 27–42. [DOI](https://doi.org/10.1016/j.jnca.2017.08.010)

2. Chiang, M., & Zhang, T. (2016). Fog and IoT: An Overview of Research Opportunities. *IEEE Internet Things J.*, vol. 3, no. 6, pp. 854–864. [DOI](https://doi.org/10.1109/JIOT.2016.2510075)

3. Mehta, A., Tarneberg, W., Klein, C., Tordsson, J., Kihl, M., &Elmroth, E. (2016). How Beneficial Are Intermediate Layer Data Centers in Mobile Edge Networks? In *FAS*W*, Augsburg, Germany, pp. 222–229.

4. El Kafhali, S., & Salah, K. (2017). Efficient and dynamic scaling of fog nodes for IoT devices. *J. Supercomput.*, vol. 73, no. 12, pp. 5261–5284. [DOI](https://doi.org/10.1007/s11227-017-2071-y)

5. Ghobaei-Arani, M., Souri, A., &Rahmanian, A. A. (2019). Resource Management Approaches in Fog Computing: a Comprehensive Review. *J. Grid Comput.*. [DOI](https://doi.org/10.1007/s10723-019-09488-9)

6. Tsai, C.-W., & Rodrigues, J. J. P. C. (2014). Metaheuristic Scheduling for Cloud: A Survey. *IEEE Syst. J.*, vol. 8, no. 1, pp. 279–291. [DOI](https://doi.org/10.1109/JSYST.2012.2227796)

7. Lamer, K., Oue, M., Battaglia, A., Roy, R. J., Cooper, K. B., Dhillon, R., & Kollias, P. (2021). Multifrequency radar observations of clouds and precipitation including the G-band. Atmospheric Measurement Techniques, 14(5), 3615-3629.

8. Davis, E. V., Rajeev, K., & Mishra, M. K. (2020). Effect of clouds on the diurnal evolution of the atmospheric boundary-layer height over a tropical coastal station. Boundary-Layer Meteorology, 175, 135-152.

9. Constantin, A. (2023). Exact nonlinear mountain waves propagating upwards. Journal of Physics A: Mathematical and Theoretical, 56(24), 245702.

10. Alwakeel, A. M. (2021). An overview of fog computing and edge computing security and privacy issues. Sensors, 21(24), 8226.

11. Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. NIST Special Publication. CrossRef Link

12. Selvi, S. T., Valliyammai, C., &Dhatchayani, V. N. (2014). Resource allocation issues and challenges in cloud computing. In Proc. of IEEE International Conference on Recent Trends in Information Technology, pp. 1-6. CrossRef Link

13. ARM—the architecture for the digital world. http://www.arm.com/. Accessed 18 January 2020.

14. Intel® AtomTM Processor. http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html. Accessed 18 January 2020.

15. Memristor. http://www.memristor.org/.

16. Simpson, R. E., Fons, P., Kolobov, A. V., Fukaya, T., Krbal, M., Yagi, T., & Tominaga, J. (2011). Interfacial phase-change memory. Nature Nanotechnology, vol. 6, no. 8, pp. 501-505. CrossRef Link

17. Ekker, N., Coughlin, T., & Handy, J. (2009). Solid State Storage 101: An introduction to Solid State Storage. Storage Network Industry Association.

18. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., ... Lu, S. (2009). BCube: a high performance, server-centric network architecture for modular data centers. ACM SIGCOMM Computer Communication Review, vol. 39, no. 4, pp. 63-74. CrossRef Link

19. Aijaz, A. (2018). Hap-SliceR: A Radio Resource Slicing Framework for 5G Networks with Haptic Communications. *IEEE Systems Journal*, 12, 2285–2296. (https://doi.org/10.1109/JSYST.2017.2719910)

20. Nassar, A., & Yilmaz, Y. (2019). Reinforcement Learning for Adaptive Resource Allocation in Fog RAN for IoT with Heterogeneous Latency Requirements. *IEEE Access*, 7, 128014–128025. (https://doi.org/10.1109/ACCESS.2019.2937909)

21. Khumalo, N. N., Oyerinde, O. O., &Mfupe, L. (2021). Reinforcement Learning-Based Resource Management Model for Fog Radio Access Network Architectures in 5G. *IEEE Access*, 9, 12706–12716. (https://doi.org/10.1109/ACCESS.2021.3057435)

22. Deng, Z., Du, Q., Li, N., & Zhang, Y. (2019). RL-Based Radio Resource Slicing Strategy for Software-Defined Satellite Networks. In *Proceedings of the 2019 IEEE 19th International Conference on Communication Technology*, Xi’an, China, 16–19 October 2019, pp. 897–901.

23. Kim, Y., & Lim, H. (2021). Multi-Agent Reinforcement Learning-Based Resource Management for End-to-End Network Slicing. *IEEE Access*, 9, 56178–56190. (https://doi.org/10.1109/ACCESS.2021.3078436)

24. Albonda, H. D. R., & Pérez-Romero, J. (2019a). Reinforcement Learning-Based Radio Access Network Slicing for a 5G System with Support for Cellular V2X. In *International Conference on Cognitive Radio Oriented Wireless Networks*, Springer, Cham, Switzerland, pp. 262–276.

25. Albonda, H. D. R., & Pérez-Romero, J. (2019b). An Efficient RAN Slicing Strategy for a Heterogeneous Network with eMBB and V2X Services. *IEEE Access*, 7, 44771–44782. (https://doi.org/10.1109/ACCESS.2019.2908701)

26. Sanguanpuak, T., Rajatheva, N., Niyato, D., &Latva-aho, M. (2018). Network Slicing with Mobile Edge Computing for Micro-Operator Networks in Beyond 5G. In *Proceedings of the 2018 21st International Symposium on Wireless Personal Multimedia Communications (WPMC)*, Chiang Rai, Thailand, 25–28 November 2018.

27. Achu Thomas Philip, N. M. (2021). Computation of 5G Fog-Radio Access Network Resource Allocation Scheme Using Reinforcement Learning. *International Research Journal of Engineering and Technology (IRJET)*, 8, 513–516.

28. Wang, X., & Zhang, T. (2019). Reinforcement Learning Based Resource Allocation for Network Slicing in 5G C-RAN. In *Proceedings of the 2019 Computing, Communications and IoT Applications (ComComAp)*, Shenzhen, China, 26–28 October 2019, pp. 106–111.

29. Van Huynh, N., Thai Hoang, D., Nguyen, D.N., Dutkiewicz, E. (2019). Optimal and Fast Real-Time Resource Slicing with Deep Dueling Neural Networks. *IEEE Journal on Selected Areas in Communications*, 37, 1455–1470.(https://doi.org/10.1109/JSAC.2019.2925399)

30. Van Huynh, N., Hoang, D.T., Nguyen, D.N., Dutkiewicz, E. (2019). Real-Time Network Slicing with Uncertain Demand: A Deep Learning Approach. In *Proceedings of the ICC 2019-2019 IEEE International Conference on Communications*, Shanghai, China, 20–24 May 2019, pp. 1–6.

31. Sun, G., Xiong, K., Boateng, G.O., Ayepah-Mensah, D., Liu, G., Jiang, W. (2019). Autonomous Resource Provisioning and Resource Customization for Mixed Traffics in Virtualized Radio Access Network. *IEEE Systems Journal*, 13, 2454–2465. (https://doi.org/10.1109/JSYST.2018.2875543)

32. Troia, S., Alvizu, R., Maier, G. (2019). Reinforcement Learning for Service Function Chain Reconfiguration in NFV-SDN Metro-Core Optical Networks. *IEEE Access*, 7, 167944–167957. (https://doi.org/10.1109/ACCESS.2019.2947800)

33. TIM. Big Data Challenge. (2014). Available online: (http://theodi.fbk.eu/openbigdata/)

34. Nassar, A., Yilmaz, Y. (2022). Deep Reinforcement Learning for Adaptive Network Slicing in 5G for Intelligent Vehicular Systems and Smart Cities. *IEEE Internet of Things Journal*, 9, 222–235. (https://doi.org/10.1109/JIOT.2021.3066102)

35. Hua, Y., Li, R., Zhao, Z., Chen, X., Zhang, H. (2020). GAN-Powered Deep Distributional Reinforcement Learning for Resource Management in Network Slicing. *IEEE Journal on Selected Areas in Communications*, 38, 334–349. (https://doi.org/10.1109/JSAC.2019.2947867)

36. Li, R., Wang, C., Zhao, Z., Guo, R., Zhang, H. (2020). The LSTM-Based Advantage Actor-Critic Learning for Resource Management in Network Slicing with User Mobility. *IEEE Communications Letters*, 24, 2005–2009. (https://doi.org/10.1109/LCOMM.2020.3000431)

37. Liu, Y., Ding, J., Zhang, Z.L., Liu, X. (2021). CLARA: A Constrained Reinforcement Learning Based Resource Allocation Framework for Network Slicing. In *Proceedings of the 2021 IEEE International Conference on Big Data (Big Data)*, Orlando, FL, USA, 15–18 December 2021, pp. 1427–1437.

38. Abiko, Y., Saito, T., Ikeda, D., Ohta, K., Mizuno, T., Mineno, H. (2020a). Flexible Resource Block Allocation to Multiple Slices for Radio Access Network Slicing Using Deep Reinforcement Learning. *IEEE Access*, 8, 68183–68198. (https://doi.org/10.1109/ACCESS.2020.2989731)

39. Abiko, Y., Saito, T., Ikeda, D., Ohta, K., Mizuno, T., Mineno, H. (2020b). Radio Resource Allocation Method for Network Slicing using Deep Reinforcement Learning. In *Proceedings of the 2020 International Conference on Information Networking*, Barcelona, Spain, 7–10 January 2020, pp. 420–425.

40. Abiko, Y., Mochizuki, D., Saito, T., Ikeda, D., Mizuno, T., Mineno, H. (2019). Proposal of Allocating Radio Resources to Multiple Slices in 5G using Deep Reinforcement Learning. In *Proceedings of the 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)*, Osaka, Japan, 15–18 October 2019, pp. 1–2.

41. Yang, G., Liu, Q., Zhou, X., Qian, Y., Wu, W. (2019). Two-Tier Resource Allocation in Dynamic Network Slicing Paradigm with Deep Reinforcement Learning. In *Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM)*, Waikoloa, HI, USA, 9–13 December 2019, pp. 1–6.

42. Xi, R., Chen, X., Chen, Y., Li, Z. (2019). Real-Time Resource Slicing for 5G RAN via Deep Reinforcement Learning. In *Proceedings of the 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS)*, Tianjin, China, 4–6 December 2019, pp. 625–632.

43. Koo, J., Mendiratta, V.B., Rahman, M.R., Walid, A. (2019). Deep Reinforcement Learning for Network Slicing with Heterogeneous Resource Requirements and Time Varying Traffic Dynamics. In *Proceedings of the 2019 15th International Conference on Network and Service Management (CNSM)*, Halifax, NS, Canada, 1–25 October 2019, pp. 1–5.

44. Statistical Workload Injector for Mapreduce (Swim). Available online: [Link](https://github.com/SWIMProjectUCB/SWIM/wiki)

45. Meng, S., Wang, Z., Ding, H., Wu, S., Li, X., Zhao, P., Zhu, C., Wang, X. (2019). RAN Slice Strategy Based on Deep Reinforcement Learning for Smart Grid. In *Proceedings of the 2019 Computing, Communications and IoT Applications*, Shenzhen, China, 26–28 October 2019, pp. 6–11.

46. Sun, G., Gebrekidan, Z.T., Boateng, G.O., Ayepah-Mensah, D., Jiang, W. (2019). Dynamic Reservation and Deep Reinforcement Learning Based Autonomous Resource Slicing for Virtualized Radio Access Networks. *IEEE Access*, 7, 45758–45772. (https://doi.org/10.1109/ACCESS.2019.2923432)

47. Sun, G., Zemuy, G.T., Xiong, K. (2018). Dynamic Reservation and Deep Reinforcement Learning based Autonomous Resource Management for wireless Virtual Networks. In *Proceedings of the 2018 IEEE 37th International Performance Computing and Communications Conference*, Orlando, FL, USA, 17–19 November 2018, pp. 1–4.

48. Sun, G., Al-Ward, H., Boateng, G.O., Liu, G. (2019). Autonomous Cache Resource Slicing and Content Placement at Virtualized Mobile Edge Network. *IEEE Access*, 7, 84727–84743. (https://doi.org/10.1109/ACCESS.2019.2925080)

49. Xu, Y., Zhao, Z., Cheng, P., Chen, Z., Ding, M., Vucetic, B., Li, Y. (2021). Constrained Reinforcement Learning for Resource Allocation in Network Slicing. *IEEE Communications Letters*, 25, 1554–1558. (https://doi.org/10.1109/LCOMM.2021.3066200)

50. Filali, A., Mlika, Z., Cherkaoui, S., Kobbane, A. (2022). Dynamic SDN-based Radio Access Network Slicing with Deep Reinforcement Learning for URLLC and eMBB Services. *IEEE Transactions on Network Science and Engineering*, 1–14. (https://doi.org/10.1109/TNSE.2021.3143321)

51. Schneider, S., Satheeschandran, N. P., Peuster, M., & Karl, H. (2020, June). Machine learning for dynamic resource allocation in network function virtualization. In 2020 6th IEEE Conference on Network Softwarization (NetSoft) (pp. 122-130). IEEE.

Downloads

Published

2025-12-02

Issue

Section

Articles

How to Cite

Khalid Ahmed Masoud Qadoua, & Elbashir Mohamed Abdullah Khalil. (2025). Resource Allocation Challenges and Solutions in Cloud Computing for Machine Learning Workloads: A Comprehensive Review. Libyan Journal of Educational Research and E-Learning (LJERE), 1(2), 290-307. https://doi.org/10.65417/ljere.v1i2.53